- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Hajibabai, Leila (3)
-
Hajbabaie, Ali (2)
-
Atik, Asya (1)
-
Bardaka, Eleni (1)
-
K. Murukannaiah, Pradeep (1)
-
Li, Kuangying (1)
-
P. Singh, Munindar (1)
-
Singh, Munindar P. (1)
-
Swann, Julie (1)
-
Vergano, Dan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study develops an integrated delivery assignment and route planning strategy for food banking operations, considering food supply and demand constraints, food item restrictions, and vehicle capacity constraints. A mixed‐integer linear model is formulated to maximize the total demand served and minimize the total travel cost imposed on delivery volunteers. An integrated solution algorithm is developed that includes Lagrangian relaxation and column generation. The algorithm decomposes the problem into assignment and routing components and solves each iteratively. The proposed methodology is applied to a case study in Wake County, NC. A series of sensitivity analyses are conducted to draw insights. The numerical results demonstrate the proposed methodology's capacity to solve complex problems in food delivery operations efficiently.more » « less
-
Hajibabai, Leila; Hajbabaie, Ali; Swann, Julie; Vergano, Dan (, Transportation Science)Since the start of the COVID-19 pandemic, disruptions have been experienced in many supply chains, particularly in personal protective equipment, testing kits, and even essential household goods. Effective vaccines to protect against COVID-19 were approved for emergency use in the United States in late 2020, which led to one of the most extensive vaccination campaigns in history. We continuously collect data on vaccine allocation, shipment and distribution, administration, and inventory in the United States, covering the entire vaccination campaign. In this article, we describe some data sets that we collaborated to obtain. We are publishing the data and making them freely available to researchers, media organizations, and other stakeholders so that others may use the data to develop insights about the distribution and wastage of vaccines during the current pandemic or to provide an informed future pandemic response. This article gives an overview of vaccine distribution logistics in the United States, describes the data we obtain, outlines how they may be accessed and used by others, and describes some high-level analyses demonstrating some aspects of the data (for data collected during January 1, 2021–March 31, 2021). This article also provides directions for future research using the collected data. Our goal is two-fold: (i) We would like the data to be used in many creative ways to inform the current and future pandemic response. (ii) We also want to inspire other researchers to make their data publicly available in a timely manner.more » « less
-
Bardaka, Eleni; Hajibabai, Leila; Singh, Munindar P.; P. Singh, Munindar; K. Murukannaiah, Pradeep (, IEEE Internet Computing)null (Ed.)
An official website of the United States government
